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Abstract

Many cluster similarity indices are used to evalu-
ate clustering algorithms, and choosing the best
one for a particular task remains an open prob-
lem. We demonstrate that this problem is crucial:
there are many disagreements among the indices,
these disagreements do affect which algorithms
are preferred in applications, and this can lead
to degraded performance in real-world systems.
We propose a theoretical framework to tackle this
problem: we develop a list of desirable properties
and conduct an extensive theoretical analysis to
verify which indices satisfy them. This allows
for making an informed choice: given a particular
application, one can first select properties that are
desirable for the task and then identify indices sat-
isfying these. Our work unifies and considerably
extends existing attempts at analyzing cluster sim-
ilarity indices: we introduce new properties, for-
malize existing ones, and mathematically prove
or disprove each property for an extensive list of
validation indices. This broader and more rig-
orous approach leads to recommendations that
considerably differ from how validation indices
are currently being chosen by practitioners. Some
of the most popular indices are even shown to be
dominated by previously overlooked ones.

1. Introduction

Clustering is an unsupervised machine learning problem,
where the task is to group objects that are similar to each
other. In network analysis, a related problem is called com-
munity detection, where groupings are based on relations
between items (links), and the obtained clusters are expected
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to be densely interconnected. Clustering is used across
various applications, including text mining, online adver-
tisement, anomaly detection, and many others (Xu & Tian,
2015; Allahyari et al., 2017).

To measure the quality of a clustering algorithm, one can
use either internal or external measures. Internal measures
evaluate the consistency of the clustering result with the data
being clustered, e.g., Silhouette, Hubert-Gamma, Dunn in-
dices or modularity in network analysis (Newman & Girvan,
2004). Unfortunately, it is often unclear whether optimizing
any of these measures would translate into improved qual-
ity in practical applications. External (cluster similarity)
measures compare the candidate partition with a reference
one (obtained, e.g., by human assessors). A comparison
with such a gold standard partition, when it is available, is
more reliable. There are many tasks where external eval-
uation is applicable: text clustering (Amigé et al., 2009),
topic modeling (Virtanen & Girolami, 2019), Web catego-
rization (Wibowo & Williams, 2002), face clustering (Wang
et al., 2019), news aggregation (see Section 3), and others.
Often, when there is no reference partition available, it is
possible to let a group of experts annotate a subset of items
and compare the algorithms on this subset.

Dozens of cluster similarity measures exist and which one
should be used is a subject of debate (Lei et al., 2017). In
this paper, we systematically analyze the problem of choos-
ing the best cluster similarity index. We start with a series of
experiments demonstrating the importance of the problem
(Section 3). First, we construct simple examples showing
the inconsistency of all pairs of different similarity indices.
Then, we demonstrate that such disagreements often occur
in practice when well-known clustering algorithms are ap-
plied to real datasets. Finally, we illustrate how an improper
choice of a similarity index can affect the performance of
production systems.

So, the question is: how to compare cluster similarity indices
and decide which one is best for a particular application?
Ideally, we would want to choose an index for which good
similarity scores translate to good real-world performance.
However, opportunities to experimentally perform such a
validation of validation indices are rare, typically expensive,
and do not generalize to other applications. In contrast, we
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suggest a theoretical approach: we formally define proper-
ties that are desirable across various applications, discuss
their importance, and formally analyze which similarity in-
dices satisfy them (Section 4). This theoretical framework
allows practitioners to choose the best index based on rele-
vant properties for their applications. In Section 5, we show
how this choice can be made and discuss indices that are
expected to be suitable across various applications.

Among the considered properties, constant baseline is ar-
guably the most important and non-trivial one. Informally,
a sensible index should not prefer one candidate partition
over another just because it has too large or too small clus-
ters. Constant baseline is a particular focus of the current
research. We develop a rigorous theoretical framework for
analyzing this property. In this respect, our work improves
over the previous (mostly empirical) research on constant
baseline of particular indices (Strehl, 2002; Albatineh et al.,
2006; Vinh et al., 2009; 2010; Lei et al., 2017).

While the ideas discussed in the paper can be applied to all
similarity indices, we provide an additional theoretical char-
acterization of pair-counting ones (e.g., Rand and Jaccard),
which gives an analytical background for further studies
of pair-counting indices. We formally prove that among
dozens of known indices, only two have all the properties
except for being a distance: Correlation Coefficient and
Sokal & Sneath’s first index (Lei et al., 2017). Surprisingly,
both indices are rarely used for cluster evaluation. Correla-
tion Coefficient has the additional advantage of being easily
convertible to a distance measure via the arccosine function.
The obtained index has all the properties except constant
baseline, which is still satisfied asymptotically.

To sum up, our main contributions are the following:

o We formally define properties that are desirable across
various applications. We analyze an extensive list of
cluster similarity indices and mathematically prove or
disprove all properties for each of them (Tables 3, 4).

e We provide a methodology for choosing a suitable val-
idation index for a particular application. In particular,
we identify previously overlooked indices that domi-
nate the most popular ones (Section 5).

e We formalize the notion of constant baseline and pro-
vide a framework for its analysis; for pair-counting
indices, we introduce the notion of asymptotic con-
stant baseline (Section 4.6). We also provide a defini-
tion for monotonicity that unifies and extends previous
attempts; for pair-counting indices, we introduce a
strengthening of monotonicity (Section 4.5).

We believe that our unified and extensive analysis provides
a useful tool for researchers and practitioners because re-
search outcomes and application performances are highly
dependent on the validation index that is chosen.

Comparison with prior work While there are previous
attempts to analyze cluster similarity indices, our work uni-
fies and significantly extends them. In particular, Lei et al.
(2017) only consider biases of pair-counting indices, Meild
(2007) analyzes properties of Variation of Information, and
Vinh et al. (2010) analyze information-theoretic indices.

Amig6 et al. (2009) consider properties desirable for text
clustering and mostly focus on monotonicity. Most impor-
tantly, Amigo et al. (2009) do not consider constant baseline
(the absence of preference towards specific cluster sizes),
which we found to be extremely important. In contrast,
the problem of indices favoring clusterings with smaller or
larger clusters has been identified by, e.g., Albatineh et al.
(2006); Lei et al. (2017); Vinh et al. (2009; 2010). This
problem is typically addressed by modifying a particular
index (or family of indices) such that the obtained measure
does not suffer from this problem. However, as we show in
this paper, these modifications often lead to other important
properties not being satisfied. We refer to Appendix A for a
more detailed comparison to related research.

In the current paper, we introduce new properties, formalize
existing ones, and mathematically prove or disprove each
property for an extensive list of validation indices. This
broader and more rigorous approach leads to conclusions
that considerably differ from how validation indices are
currently being chosen.

2. Cluster Similarity Indices

We consider clustering n elements numbered from 1 to n,
so that a clustering can be represented by a partition of
{1,...,n} into disjoint subsets. Capital letters A, B, C will
be used to name the clusterings, and we will represent them
as A = {Ay,..., Ay, }, where A, is the set of elements
belonging to ¢-th cluster. If a pair of elements v, w € V lie
in the same cluster in A, we refer to them as an intra-cluster
pair of A, while inter-cluster pair will be used otherwise.
The total number of pairs is denoted by N = (3). The
value that an index V assigns to the similarity between
partitions A and B will be denoted by V (A, B). We now
define some of the indices used throughout the paper. A
more comprehensive list, together with formal definitions,
is given in Appendices B.1, B.2.

Pair-counting indices consider clusterings to be simi-
lar if they agree on many pairs. Formally, let A be the
N-dimensional vector indexed by the set of element-pairs,
where the entry corresponding to (v, w) equals 1 if (v, w) is
an intra-cluster pair and 0 otherwise. Let M 4 p be the N x 2
matrix that results from concatenating the two (column-)
vectors A and B. Each row of M 4 is either 11,10, 01,
or 00. Let the pair-counts N1, N1g, No1, Voo denote the
number of occurrences for each of these rows in M 4.
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Definition 1. A pair-counting index is a similarity index
that can be expressed as a function of the pair-counts
Ni1, N1o, No1, Noo.

Some popular pair-counting indices are Rand and Jaccard:

R_ Ni1 + Noo 5 Ny
Ni1 4+ N1ig + No1 + Noo’ Ni1 + Nig + Not -

Adjusted Rand (AR) is an adaptation of Rand ensuring that
when B is random, we have AR(A, B) = 0 in expecta-
tion. A less widely used index is the Pearson Correla-
tion Coefficient (CC) between the binary incidence vectors
A and B.' Another index, which we discuss further in
more details, is the Correlation Distance CD(A, B) =
L arccos CC(4, B). In Appendix B.2, we formally define
27 known pair-counting indices and only mention those of
particular interest throughout the main text.

Information-theoretic indices consider clusterings sim-
ilar if they share a lot of information, i.e., if little in-
formation is needed to transform one clustering into the
other. Formally, let H(A) := H(|A1|/n,...,|Ak,|/n) be
the Shannon entropy of the cluster-label distribution of A.
Similarly, the joint entropy H (A, B) is defined as the en-
tropy of the distribution with probabilities (pi; )i (k4] i (ks
where p;; = |A; N B;|/n. Then, the mutual informa-
tion of two clusterings can be defined as M(A,B) =
H(A) + H(B) — H(A, B). There are multiple ways of
normalizing the mutual information:

M(A, B)
(H(A) + H(B)) /2
M(A, B)
max{H(A), H(B)}

NMI(A, B) =

NMImax (A7 B) =

NMI is known to be biased towards smaller clusters, and
several modifications try to mitigate this bias: Adjusted Mu-
tual Information (AMI) and Standardized Mutual Informa-
tion (SMI) subtract the expected mutual information from
M (A, B) and normalize the obtained value (Vinh et al.,
2009), while Fair NMI (FNMI) multiplies NMI by a penalty
factor e~ 1ka—ksl/ka (Amelio & Pizzuti, 2015).

3. Motivating Experiments

Evidently, many different cluster similarity indices are used
by researchers and practitioners. A natural question is: how
to choose the best one? Before trying to answer this ques-
tion, it is important to understand whether the problem is
relevant. Indeed, if the indices are very similar to each other
and agree in most practical applications, then one can safely

!Spearman and Pearson correlation are equal when compar-
ing binary vectors. Kendall rank correlation for binary vectors
coincides with the Hubert index that is linearly equivalent to Rand.

(a) FNMI, R, AR, J, D, W,
FMeasure, BCubed

(b) NMI, NMI,yax, VI, AMI,
S&S, CC, CD

Figure 1. Inconsistency of indices: shapes denote the reference
partition, captions indicate indices favoring the candidate.

Table 1. Inconsistency on real-world clustering datasets, %

NMI VI AR S&S1 CC
NMI - 403 15.7 20.1 18.5
VI - 376 36.0 37.2
AR - 11.7 8.3
S&S1 - 36
CC -

take any index. In this section, we demonstrate that this is
not the case, and that the choice matters.

First, we illustrate the inconsistency of all indices. We say
that two indices V; and V5 are inconsistent for a triplet
of partitions (A, By, Bs) if V1(A, B1) > Vi(A, By) but
Va(A, By) < Va(A, Bs). We took 15 popular cluster simi-
larity measures and constructed just four triplets such that
each pair of indices is inconsistent for at least one triplet.
One such triplet is shown in Figure 1: for this simple exam-
ple, about half of the indices prefer the left candidate, while
the others prefer the right one. Other examples can be found
in Appendix F.1.

Thus, we see that the indices differ. But can this affect con-
clusions obtained in experiments on real data? To check
that, we ran 8 well-known clustering algorithms (Scikit-
learn, 2020) on 16 real-world datasets from the UCI ma-
chine learning repository (Dua & Graff, 2017). Each dataset,
together with a pair of algorithms, gives a triplet of partitions
(A, By, By), where A is a reference partition and By, By
are provided by two algorithms. For a given pair of indices
and all such triplets, we look at whether the indices are con-
sistent. Table 1 shows the relative inconsistency for several
popular indices.> The inconsistency rate is significant: e.g.,
popular measures Adjusted Rand and Variation of Informa-
tion disagree in almost 40% of the cases. Importantly, the
best agreeing indices are S&S and CC, which satisfy most
of our properties, as shown in the next section.

The extended table together with a detailed description of the
experimental setup and more analysis is given in Appendix F.2.
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Table 2. Comparing algorithms according to different indices

Ay Ay
NMI 0.9479 0.9482
FNMI 0.9304 0.8722
AMI 0.7815 0.7533
VI 0.5662 0.5503
R 0.9915 0.9901
AR 0.5999 0.6213
J 0.4329 0.4556
S&S 0.8004 0.8262
CC 0.6004 0.6371

To demonstrate that the choice of similarity index may af-
fect the final performance in a real production scenario,
we conducted an experiment within a major news aggre-
gator system. The system groups news articles to events
and shows the list of most important events to users. For
grouping, a clustering algorithm is used, and the quality of
this algorithm affects the user experience: merging differ-
ent clusters may lead to not showing an important event,
while too much splitting may cause duplicate events. When
comparing several candidate clustering algorithms, it is im-
portant to determine which one is the best for the system.
Online experiments are expensive and can be used only for
the best candidates. Thus, we need a tool for an offline com-
parison. For this purpose, we manually created a reference
partition on a small fraction of news articles to evaluate
the candidates. We performed such an offline comparison
for two candidate algorithms A; and A5 and observed that
different indices preferred different algorithms (see Table 2).
In particular, well-known FNMI, AMI, and Rand prefer A;
that disagrees with most of the indices. Then, we launched
an online user experiment and verified that the candidate
As is better for the system according to user preferences.
This shows the importance of choosing the right index for
offline comparisons. See Appendix F.3 for a more detailed
description of this experiment.

4. Analysis of Cluster Similarity Indices

In this section, we motivate and formally define properties
that are desirable for cluster similarity indices. We start
with simple and intuitive ones that can be useful in some
applications but not always necessary. Then, we discuss
more complicated properties, ending with constant baseline,
which is extremely important but least trivial. In Tables 3
and 4, indices of particular interest are listed along with
the properties satisfied. In Appendix C, we give the proofs
for all entries of these tables. For pair-counting indices
we perform a more detailed analysis and define additional
properties. For such indices, we interchangeably use the

notation V' (A, B) and V (Ny1, N1o, No1, Noo)-

Some of the indices have slight variants that are essentially
the same. For example, the Hubert index (Hubert, 1977)
is a linear transformation of the Rand index: H = 2R —
1. All the properties defined in this paper are invariant
under linear transformations and interchanging A and B.
Hence, we define the following linear equivalence relation
on similarity indices and check the properties for at most
one representative of each equivalence class.

Definition 2. Similarity indices Vi and Vs, are linearly
equivalent if there exists a nonconstant linear function f
such that either V1 (A, B) = f(Va(A, B)) or V1(A, B) =
f(Va(B; A)).

This allows us to conveniently restrict to indices for which
higher numerical values indicate higher similarity of parti-
tions. Appendix Table 2 in lists equivalences among indices.

4.1. Property 1: Maximal Agreement

The numerical value that an index assigns to a similarity
must be easily interpretable. In particular, it should be easy
to see whether the candidate clustering is maximally similar
to (i.e., coincides with) the reference clustering. Formally,
we require that V (A, A) = cmax is constant and either a
strict upper bound for V (A, B) for all A # B. The equiva-
lence from Definition 2 allows us to assume that V' (A, A) is
a maximum w.l.o.g. This property is easy to check, and it is
satisfied by almost all indices, except for SMI and Wallace.

Property 1’: Minimal Agreement The maximal agree-
ment property makes the upper range of the index inter-
pretable. Similarly, a numerical value for low agreement
would make the lower range interpretable. A minimal agree-
ment is not well defined for general partitions: it is unclear
which partition is most dissimilar to a given one. However,
by Lemma 1 in Appendix B.3, pair-counting indices form
a subclass of graph similarity indices. For a graph with
edge-set F, it is clear that the most dissimilar graph is its
complement (i.e., with edge-set £¢). Comparing a graph to
its complement results in pair-counts N1; = Nyg = 0 and
Nig + No1 = N. This motivates the following definition:

Definition 3. A pair-counting index V has the minimal
agreement property if there exists a constant cpin So that
V(N11, N1o, No1, Noo) = cmin with equality if and only if
Ni1 = Ngo = 0.

This property is satisfied by Rand, Correlation Coefficient,
and Sokal&Sneath, while it is violated by Jaccard, Wal-
lace, and Dice. Adjusted Rand does not have this property
since substituting N1; = Nyo = 0 gives the non-constant

AR(0, N1g, No1,0) = —%
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4.2. Property 3: Symmetry

Similarity is intuitively understood as a symmetric concept.
Therefore, a good similarity index is expected to be sym-
metric, i.e., V(A, B) = V(B, A) for all partitions A4, B.?
Tables 3 and 4 show that most indices are symmetric. The
asymmetric ones are precision and recall (Wallace) and
FNMI (Amelio & Pizzuti, 2015), which is a product of NMI
and an asymmetric penalty factor.

4.3. Property 4: Linear Complexity

For clustering tasks on large datasets, running time is cru-
cial, and algorithms with superlinear time can be infeasible.
In these cases, a validation index with superlinear running
time would be a significant bottleneck. Furthermore, com-
putationally heavy indices also tend to be complicated and
hard to interpret intuitively. We say that an index has linear
complexity when its worst-case running time is O(n). In
Appendix C.2, we prove that any pair-counting index has
O(n) complexity. Many general indices have this property
as well, except for SMI and AMI.

4.4. Property 4. Distance

For some applications, a distance-interpretation of dissimi-
larity may be desirable: whenever A is similar to B and B
is similar to C, then A should also be somewhat similar to
C. For example, assume that the reference clustering (e.g.,
labeled by experts) is an approximation of the ground truth.
In such situations, it may be reasonable to argue that the
reference clustering is at most a distance ¢ from the true
one, so that the triangle inequality bounds the dissimilarity
of the candidate clustering to the unknown true clustering.

A function d is a distance metric if it satisfies three distance
axioms: 1) symmetry (d(A, B) = d(B, A)); 2) positive-
definiteness (d(A, B) > 0 with equality iff A = B); 3) the
triangle inequality (d(4, C) < d(A4, B)+d(B, C)). We say
that V' is linearly transformable to a distance metric if there
exists a linearly equivalent index that satisfies these three
distance axioms. Note that all three axioms are invariant
under rescaling of d. We have already imposed symmetry as
a separate property, and positive-definiteness is equivalent
to the maximal agreement property. Therefore, whenever V
has these two properties, it satisfies the distance property iff
d(A, B) = cmax — V (A, B) satisfies the triangle inequality,
for cpax as defined in Section 4.1.

Examples of popular indices having this property are Vari-
ation of Information and the Mirkin metric. In Vinh et al.
(2010), it is proved that when Mutual Information is nor-

3In some applications, A and B may have different roles (e.g.,
reference and candidate partitions), and an asymmetric index may
be suitable if there are different consequences of making false
positives or false negatives.

malized by the maximum of entropies, the resulting NMI
is equivalent to a distance metric. A proof that the Jaccard
index is equivalent to a distance is given in Kosub (2019).
See Appendix C.1 for all the proofs.

Correlation Distance Among all the considered indices,
there are two pair-counting ones having all the proper-
ties except for being a distance: Sokal&Sneath and Cor-
relation Coefficient. However, the correlation coefficient
can be transformed to a distance metric via a non-linear
transformation. We define Correlation Distance (CD) as
CD(A, B) := L arccos CC(A, B), where CC is the Pear-
son correlation coefficient and the factor 1/~ scales the index
to [0,1]. To the best of our knowledge, this Correlation
Distance has never before been used as a similarity index
for comparing clusterings throughout the literature.

Theorem 1. The Correlation Distance is indeed a distance.

Proof. A proof of this is given in (Van Dongen & Enright,
2012). We give an alternative proof that allows for a geo-
metric interpretation. First, we map each partition A to an
N-dimensional vector on the unit sphere by

L1 ifha =1,
dA) = d AR i C k<
) ARl ’
f%ﬁ1 ifka =n,

where 1 is the N-dimensional all-one vector, A is the
binary vector representation of a partition introduced in
Section 2, and m4 = Ni; + Nyg is the number of intra-
community pairs of A. Straightforward computation gives
A — 241l = /ma(N —ma)/N, and standard inner
product

<g_%17§_m71\/?1>:]\[11—

so that the inner product indeed corresponds to CC:

_ N11Noo — N1oNo1
\/mA(N - mA)mB(N - mB)

= CC(4, B).

It is a well-known fact that the inner product of two vec-
tors of unit length corresponds to the cosine of their angle.
Hence, taking the arccosine gives us the angle. The angle
between unit vectors corresponds to the distance along the
unit hypersphere. As « is an injection from the set of parti-
tions to points on the unit sphere, we may conclude that this
index is indeed a distance on the set of partitions. O

In Section 4.6, we show that the distance property of Corre-
lation Distance is achieved at the cost of not having the exact
constant baseline, though it is still satisfied asymptotically.
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Table 3. Requirements for general similarity indices

Table 4. Requirements for pair-counting indices*

&
g z g - 2 E , £
g . = 2 g g 3 = = 2 § g £ £
5 & o g & 8 & 2 F g € = ¢ =2
¥ 2§ £ 3 2 2 3 ¢ 5 § 5% E %
e PR ;1 E 5 EFiGo;
> o= o =4 ] H=] > 2 g g =] e ] >
= » A A = © = = »# A 4 2 & O < E
NMI X X R X X X
NMlax X X AR X X X
FNMI X X X X ] X X X X o\
VI X W X X x X X X X x N
SMI X X X X D X X X X X N
FMeasure X X X CC X
BCubed X X S&S1 X
AMI X X CD X

4.5. Property 5: Monotonicity

When one clustering is changed such that it resembles the
other clustering more, the similarity score ought to improve.
Hence, we require an index to be monotone w.r.t. changes
that increase the similarity. This can be formalized via the
following definition.

Definition 4. For clusterings A and B, we say that B’ is
an A-consistent improvement of B iff B # B’ and all pairs
of elements agreeing in A and B also agree in A and B’.

This leads to the following monotonicity property.

Definition 5. An index V satisfies the monotonicity prop-
erty if for every two clusterings A, Bwith 1 < ks < n and
any B’ that is an A-consistent improvement of B, it holds
that V(A,B') > V(A,B) and V(B', A) > V (B, A).

The trivial cases k4 = 1 and k4 = n were excluded to
avoid inconsistencies with the constant baseline property
defined in Section 4.6. To look at monotonicity from a
different perspective, we define the following operations:

e Perfect split: B’ is a perfect split of B (w.r.t. A) if B’
is obtained from B by splitting a single cluster ; into
two clusters B{, B such that no two elements of the
same cluster of A are in different parts of this split, i.e.,
for all 4, A; N By is a subset of either B} or BY.

e Perfect merge: We say that B’ is a perfect merge of
B (w.r.t. A) if there exists some A; and By, By C A;
such that B’ is obtained by merging By, Bs into Bj.

The following theorem gives an alternative definition of
monotonicity and is proven in Appendix E.1.

Theorem 2. B’ is an A-consistent improvement of B iff B
can be obtained from B by a sequence of perfect splits and
perfect merges.

Note that this monotonicity is a stronger form of the first two
constraints defined in (Amigé et al., 2009): Cluster Homo-

geneity is a weaker form of our monotonicity w.r.t. perfect
splits, while Cluster Equivalence is equivalent to our mono-
tonicity w.r.t. perfect merges.

Monotonicity is a critical property that should be satisfied by
any sensible index. Surprisingly, not all indices satisfy this:
we have found counterexamples that prove that SMI, FNMI,
and Wallace do not have the monotonicity property. Further-
more, for NMI, whether monotonicity is satisfied depends
on the normalization: the normalization by the average of
the entropies has monotonicity, while the normalization by
the maximum of the entropies does not.

Property 5'. Strong Monotonicity For pair-counting in-
dices, we can define a stronger monotonicity property in
terms of pair-counts.

Definition 6. A pair-counting index V satisfies strong
monotonicity if it is increasing in N11, Nog when N1ig +
No1 > 0, and decreasing in N1g, No1 when N11+ Ngg > 0.

Note that the conditions N1g+ Ng1 > 0and Ny1+ Ngp > 0
are needed to avoid contradicting maximal and minimal
agreement respectively. This property is stronger than mono-
tonicity as it additionally allows for comparing similarities
across different settings: we could compare the similarity
between Aj, By on n; elements with the similarity between
Ag, By on ny elements, even when ny # no. This ability
to compare similarity scores across different numbers of
elements is similar to the Few data points property of SMI
(Romano et al., 2014) that allows its scale to have a similar
interpretation across different settings.

We found several examples of indices that have Property 5
while not satisfying Property 5’. Jaccard and Dice indices
are constant w.r.t. Nyg, so they are not strongly monotone.

*All known pair-counting indices excluded from this table
do not satisfy either constant baseline, symmetry, or maximal
agreement.
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A more interesting example is the Adjusted Rand index,
which may become strictly larger if we only increase V1.

4.6. Property 6. Constant Baseline

This property is arguably the most significant: it is less
intuitive than the other ones and may lead to unexpected
consequences in practice. Informally, a good similarity in-
dex should not give a preference to a candidate clustering
B over another clustering C' just because B has many or
few clusters. This intuition can be formalized using random
partitions: assume that we have some reference clustering A
and two random partitions B and C'. While intuitively both
random guesses are equally bad approximations of A, it has
been known throughout the literature (Albatineh et al., 2006;
Vinh et al., 2009; 2010; Romano et al., 2014) that some in-
dices tend to give higher scores for random guesses with a
larger number of clusters. Ideally, we want the similarity
value of a random candidate w.r.t. the reference partition to
have a fixed expected value ¢y, (independent of A or the
sizes of B). However, this does require a careful formaliza-
tion of random candidates.

Definition 7. We say that a distribution over clusterings B
is element-symmetric if for every two clusterings B and B’
that have the same cluster-sizes, B returns B and B’ with
equal probabilities.

This allows us to define the constant baseline property.

Definition 8. An index V satisfies the constant baseline
property if there exists a constant Cpqs SO that, for any
clustering Awith1 < ka < n and every element-symmetric
distribution B, it holds that Ep..g[V (A, B)] = Cpase-

In the definition, we have excluded the cases where A is a
trivial clustering consisting of either 1 or n clusters. Includ-
ing them would cause contradictions with maximal agree-
ment whenever we choose B3 as the (element-symmetric) dis-
tribution that returns A with probability 1. In Appendix D.1,
we prove that to verify whether an index satisfies Defini-
tion 8, it suffices to check whether it holds for distributions
B that are uniform over clusterings with fixed cluster sizes.
From this equivalence, it will also follow that Definition 8
is indeed symmetric. Note that the formulation in terms
of element-symmetric distributions allows for a wide range
of clustering distributions. For example, the cluster sizes
could be drawn from a power-law distribution, which is of-
ten observed in practice (Arenas et al., 2004; Clauset et al.,
2004).

Constant baseline is extremely important in many practi-
cal applications: if an index violates this property, then its
optimization may lead to undesirably biased results. For
instance, if a biased index is used to choose the best algo-
rithm among several candidates, then it is likely that the
decision will be biased towards those who produce too large

or too small clusters. This problem is often attributed to
NMI (Vinh et al., 2009; Romano et al., 2014), but we found
that almost all indices suffer from it. The only indices that
satisfy the constant baseline property are Adjusted Rand in-
dex, Correlation Coefficient, SMI, and AMI with ¢p,ee = 0
and Sokal&Sneath with ¢y, = 1/2. Interestingly, out of
these five indices, three were specifically designed to satisfy
this property, which made them less intuitive and resulted
in other important properties being violated.

The only condition under which the constant baseline prop-
erty can be safely ignored is knowing in advance all cluster
sizes. In this case, bias towards particular cluster sizes
would not affect decisions. However, we are not aware of
any practical application where such an assumption can be
made. Note that knowing only the number of clusters is in-
sufficient. We illustrate this in Appendix D.4, where we also
show that the bias of indices violating the constant baseline
is easy to identify empirically.

Property 6': Asymptotic Constant Baseline  For pair-
counting indices, a deeper analysis of the constant base-
line property is possible. Let m4 = Ny1 + Nyig, mp =
Ni1 + Npp be the number of intra-cluster pairs of A and B,
respectively. If the distribution B is uniform over clusterings
with given sizes, then m 4 and mp are both constant. Fur-
thermore, the pair-counts N1g, No1, Noo are functions of
N,my4,mp, N11. Hence, to find the expected value of the
index, we need to inspect it as a function of a single random
variable N1;. For a random pair, the probability that it is an
intra-cluster pair of both clusterings is m 4mp /N2, so the
expected values of the pair-counts are

Nill = %7

NOl = 7’713—]\]117 NOO Z:N—mA—mB+N11.

Nig :=ma — Nuy, (1)

‘We can use these values to define a weaker variant of con-
stant baseline.

Definition 9. A pair-counting index V has an asymptotic
constant baseline if there exists a constant Cpug SO that

V' (N11, Nio, Not, Noo) = Coase for all ma,mp € (0, N).

In contrast to Definition 8, asymptotic constant baseline is
very easy to verify: one can substitute the values from (1)
to the index and check whether the obtained value is con-
stant. Another important observation is that under mild
assumptions V' (N11, N1g, No1, Noo) converges in proba-
bility to V' (N11, N1o, No1, Noo) as n grows which justifies
the usage of the name asymptotic constant baseline, see
Appendix D.2 for more details.

Note that the non-linear transformation of Correlation Coef-
ficient to Correlation Distance makes the latter one violate
the constant baseline property. CD does, however, still have
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the asymptotic constant baseline at !/2 and we prove in Ap-
pendix E.2 that the expectation in Definition 8 is very close
to this value.’

Biases of Cluster Similarity Indices  Given the fact that
there are so many biased indices, one may be interested in
what kind of candidates they favor. While it is unclear how
to formalize this concept for general validation indices, we
can do this for pair-counting ones by analyzing them in
terms of a single variable: the number of inter-cluster pairs.
This value characterizes the granularity of a clustering: it
is high when the clustering consists of many small clusters
while it is low if it consists of a few large clusters.

Informally, we say that an index suffers from PairDec bias
if it may favor less inter-cluster pairs. Similarly, Pairinc
bias means that an index may prefer more inter-cluster pairs.
These biases can be formalized as follows.

Definition 10. Let V' be Ma@@@d@x and de-
ﬁne V(g) (mA, mB) =V (N11, Nlo, N01, Noo) for the ex-
pected pair-counts as defined in (1). We say that

(i) V suffers from PairDec bias if there are my, mp €
(0, N) such that ﬁ ) (ma,mp) > 0;

(ii) V suffers from PairInc bias if there are ma,mp €
(0, N) such that ﬁv(s)(m;}, mpg) < 0.

Note that this definition does require V(%) to be differen-
tiable in m 4 and mpg. However, this is the case for all
pair-counting indices in this work. Applying this definition

to Jaccard J©*) (m 4, mp) = N(mAf;,f;’)”fmAmB and Rand

R®)(ma,mp) =1~ (ma+mpg)/N +2mamp/N? im-
mediately shows that Jaccard suffers from PairDec bias and
Rand suffers from both biases. The direction of the mono-
tonicity for the bias of Rand is determined by the condition
2m4 > N. Performing the same for Wallace and Dice
shows that both suffer from PairDec bias. Note that an index
satisfying the asymptotic constant baseline property will not
have any of these biases as V) (M, MB) = Chase-

While there have been previous attempts to characterize
types of biases (Lei et al., 2017), they mostly rely on analy-
ses based on the number of clusters. However, our analysis
shows that the number of clusters is not the correct variable
for such a characterization of pair-counting indices. While
having many clusters often goes hand-in-hand with having
many inter-cluster pairs, it is not always the case: if there are
significant differences between the cluster sizes (e.g., one
large cluster and many small clusters), then the clustering
may consist of many clusters while having relatively few
inter-cluster pairs. We discuss this in more detail in Ap-
pendix E.3. Additionally, Experiments shown in Figures 1

>There is also another transformation of CC to a distance
CD’ = /2(1 — CC). However, it can be shown that CD’ ap-
proximates a constant baseline less well than CD.

and 2 of the Appendix show that in such cases, most indices
have a similar bias as if there were few clusters, which is
consistent with our characterization of such biases in terms
of the number of inter-cluster pairs.

5. Discussion and Conclusion

At this point, we better understand the theoretical properties
of cluster similarity indices, so it is time to answer the
question: which index is the best? Unfortunately, there is
no simple answer, but we can make an informed decision.
In this section, we sum up what we have learned, argue
that there are indices that are strictly better alternatives than
some widely used ones, and give practical advice on how to
choose a suitable index for a given application.

Among all properties discussed in this paper, monotonic-
ity is the most crucial one. Violating this property is a
fatal problem: such indices can prefer candidates which
are strictly worse than others. Hence, we advise against
using the well-known NMI,,, .., FMeasure, FNMI, and SMI
indices.

The constant baseline property is much less trivial but is
equally important: it addresses the problem of preferring
some partitions only because they have small or large clus-
ters. This property is essential unless you know all cluster
sizes. Since we are not aware of practical applications where
all cluster sizes are known, we assume below that this is
not the case.® This requirement is satisfied by just a few
indices, so we are only left with AMI, Adjusted Rand (AR),
Correlation Coefficient (CC), and Sokal&Sneath (S&S). Ad-
ditionally, Correlation Distance (CD) satisfies constant base-
line asymptotically and deviations from the exact constant
baseline are extremely small (see Appendix E.2).

Let us note that among the remaining indices, AR is strictly
dominated by CC and S&S since it does not have the mini-
mum agreement and strong monotonicity. Also, similarly to
AMI, AR is specifically created to have a constant baseline,
which made this index more complex and less intuitive than
other pair-counting indices. Hence, we are only left with
four indices: AMI, S&S, CC, and CD.

According to their theoretical properties, all these indices are
good, and any of them can be chosen. Figure 2 illustrates
how a final decision can be made. First, one can decide
whether the distance property is needed. For example, sup-
pose one wants to cluster the algorithms by comparing the
partitions provided by them. If one would want to use a met-
ric clustering algorithm for this, the index would have to be
a distance. In this case, CD would be the best choice. If the
distance property is not needed, one could base the decision

SHowever, in applications where such an assumption holds, it
can be reasonable to use, e.g., BCubed, Variation of Information,
and NMIL.
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Do you need
metric properties
of scores?

Do you need

Use CD fast index

computation?

Importance of

small clusters Use CC or S&S

Less More

Use CC or S&S Use AMI

Figure 2. Example of how one can make a decision among good
cluster similarity indices.

on computational complexity. In many large-scale applica-
tions, using clustering algorithms with higher than linear
running time is infeasible. Understandably, it is undesirable
if the computation of a validation score takes longer than
the actual clustering algorithm. Another example is multi-
ple comparisons: choosing the best algorithm among many
candidates (differing, e.g., by a parameter value). If fast
computation is required, then AMI is not a proper choice,
and one has to choose between CC and S&S. Otherwise,
all three indices are suitable according to our formal con-
straints.

Let us discuss an (informal) criterion that may help to
choose between AMI and pair-counting alternatives. Dif-
ferent indices may favor a different balance between errors
in small and large clusters. In particular, all pair-counting
indices give larger weights to errors in large clusters: mis-
classifying one element in a cluster of size k costs k — 1
incorrect pairs. It is known (empirically) that information-
theoretic indices do not have this property and give a higher
weight to small clusters (Amigé et al., 2009).” Amigé et al.
(2009) argue that for their particular application (text clus-
tering), it is desirable not to give a higher weight to large
clusters. In contrast, there are applications where the oppo-
site may hold. For instance, consider a system that groups
user photos based on identity and shows these clusters to
a user as a ranked list. In this case, a user is likely to in-
vestigate the largest clusters consisting of known people
and would rarely spot an error in a small cluster. The same
applies to any system that ranks the clusters, e.g., to news
aggregators. Based on what is desirable for a particular ap-
plication, one can choose between AMI and pair-counting
CC and S&S.

The final decision between CC and S&S is hard to make

"This is an interesting aspect that has not received much at-
tention in our research since we believe that the desired balance
between large and small clusters may differ per application and we
are not aware of a proper formalization of this “level of balance”
in a general form.

since they are equally good in terms of their theoretical
properties. Interestingly, although some works (Choi et al.,
2010; Lei et al., 2017) list Pearson correlation as a cluster
similarity index, it has not received attention that our results
suggest it deserves, similarly to S&S. First, both indices are
interpretable. CC is a correlation between the two incidence
vectors, which is a very natural concept. S&S is the average
of precision, recall (for binary classification of pairs) and
their inverted counterparts, which can also be intuitively
understood. Also, CC and S&S usually agree in practice:
in Tables 1 and 3 we can see that they have the largest
agreement. Hence, one can take any of these indices. An-
other option would be to check whether there are situations
where these indices disagree and, if this happens, perform
an experiment similar to what we did in Section 3 for news
aggregation. While some properties listed in Tables 3 and 4
are not mentioned in the discussion above, they can be im-
portant for particular applications. For instance, maximum
and minimum agreements are useful for interpretability, but
they can also be essential if some operations are performed
over the index values: e.g., averaging the scores of different
algorithms. Symmetry can be necessary if there is no “gold
standard” partition, but algorithms are compared only to
each other.

Finally, let us remark that in an early version of this pa-
per, we conjectured that the constant baseline and distance
properties are mutually exclusive. This turns out to be true:
in ongoing work, we prove an impossibility theorem: for
pair-counting indices monotonicity, distance, and constant
baseline cannot be simultaneously satisfied.
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